Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells.

نویسندگان

  • Derya Baran
  • Raja Shahid Ashraf
  • David A Hanifi
  • Maged Abdelsamie
  • Nicola Gasparini
  • Jason A Röhr
  • Sarah Holliday
  • Andrew Wadsworth
  • Sarah Lockett
  • Marios Neophytou
  • Christopher J M Emmott
  • Jenny Nelson
  • Christoph J Brabec
  • Aram Amassian
  • Alberto Salleo
  • Thomas Kirchartz
  • James R Durrant
  • Iain McCulloch
چکیده

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی

Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...

متن کامل

Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics.

A series of unsymmetrical π-conjugated small molecules have been constructed from meso-alkyl substituted porphyrins as the central unit and 3-ethylrhodanine as the terminal group. Using PC71BM as an acceptor, and these small molecules as electron donors in solution-processed bulk-heterojunction solar cells, a high power conversion efficiency of 6.49% has been achieved.

متن کامل

Nanoimprinted large area heterojunction pentacene-C60 photovoltaic device

A pentacene-C60 bilayer heterojunction organic photovoltaic device with interpenetrating donor-acceptor interface was fabricated by nanoimprinting the pentacene layer prior to C60 deposition. An amorphous silicon substrate nanostructured using an excimer laser was imprinted onto the pentacene layer at high temperature and pressure, using a nanoimprinting lithography system to form a textured pe...

متن کامل

2008 GCEP Report Project title : Advanced Materials and Devices for Low Cost and High Performance Organic Photovoltaic Cells

Exciton harvesting is of fundamental importance for the efficient operation of organic photovoltaic devices. The quantum efficiencies of many organic and hybrid organicinorganic devices are still limited by low exciton harvesting efficiencies. This problem is most apparent in planar heterostructures that suffer from a direct tradeoff between light absorption and exciton harvesting. One approach...

متن کامل

Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material.

A graphene-based porphyrin molecule (GO-TPP) was synthesized by covalent linkage of graphene oxide (GO) with 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP-NH2). The yielded graphene-based material is a donor-acceptor (D-A) molecule, exhibiting strong intermolecular interactions between the GO core (A) and the covalently anchored porphyrin molecule (D). To demonstrate the universal role of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2017